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Introduction

Motivation Protein folding is an important and well-known problem in computational biology. To
give a bit of background, proteins are biological molecules that can be represented as sequences,
where each character in the sequence is one of 20 amino acids (AAs). Many human diseases such as
Alzheimer’s and Amyotrophic Lateral Sclerosis (ALS) are believed to be caused by the misfolding of
proteins (i.e., altered protein sequences) [1]. Computational methods attempt to find the 3D structure
of a protein given its string of amino acid sequences.

With that biology background out of the way, I will describe current methods for simulating protein
folding with quantum computing. This survey will step through the quantum algorithm from Perdomo
et al. for Hydrophobic-Polar protein folding [2]. This algorithm utilizes the quantum adiabatic
evolution algorithm from Farhi et al. [3].

Problem Formulation While more complex and biologically rooted models for protein folding have
been proposed [4], we will restrict all of our analysis to the simplest model: the Hydrophobic-Polar
(HP) Lattice Model. Here, a protein sequence P is defined as a bitstring of size N .

P = {0, 1}N

Where
Pi = 0 when the ith AA in the protein sequence is Polar.
Pi = 1 when the ith AA in the sequence is Hydrophobic.

Our goal is to find the optimal self-avoiding walk in a grid of size N3. This corresponds to a path in a
3D lattice where no vertex is traversed more than once.

The position of the ith AA in the protein sequence is the position after (i− 1) moves in the walk. For
example, in Fig 2C from Perdomo et al. below, the x-position of the 3rd AA is 2 (10 in binary), and
the y-position is 1 (01) [2].

Figure 1: Example protein folding in 2D grid (Perdomo et al.) [2]. Here, the beads represent numbered AAs,
with blue and beige AAs representing hydrophobic (Pi = 1) and polar (Pi = 0) beads, respectively.

A self-avoiding walk is considered optimal if it contains the maximum number of non-adjacent
hydrophobic interactions (dashed lines in Fig. 2C). An interaction is where 2 non-neighboring
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hydrophobic AAs (blue beads) are next to each other (L1 distance = 1) in the lattice. We will define
the interaction score Si,j for each AA pair i, j ∈ [N ]:

Si,j = −1 if ||positioni − positionj ||1 = 1, |i− j| ≠ 1, Pi = Pj = 1

Si,j = 0 otherwise

Let positioni, positionj represent the position of the ith and jth AA, respectively, in the lattice.

A self-avoiding walk is optimal if it minimizes
∑

i,j Si,j .

Encoding

Our algorithm’s goal is to output the optimal 3D structure of a protein. We can define the output
encoding as a list of size N, where the ith element contains the 3D position of the ith amino acid.

Since each axis of the 3D grid has N tickmarks, encoding the position of an amino acid in a single
dimension requires a binary encoding of size ⌈log2(N)⌉. For simplicity, we will assume that N is
a power of 2 for the remaining analysis. This means the algorithm’s output for N amino acids in 3
dimensions is a binary string of size 3Nlog2(N).

Our algorithm will take as input the protein sequence P ∈ {0, 1}N , and output the 3D structure
q ∈ {0, 1}3Nlog2(N):

Goal: Adiabatic Quantum Algorithm for the HP Problem (Perdomo et al.)

Let the equation below from Farhi et al. [3] represent the change of our state |ψ(t)⟩ in time.

iℏ
d

dt
|ψ(t)⟩ = Ĥ(t) |ψ(t)⟩

We will set Ĥ(t) = (1− t
τ )Ĥ(0) + ( t

τ )Hf

By the Adiabatic Theorem [3]: If the initial configuration is set to the ground state (eigenvector with
smallest eigenvalue and multiplicity 1) of Ĥ(0), then if we discretize the above Schrodinger equation
in many many steps, the final configuration will be in the ground state of Ĥ(τ), the optimal solution.

So when τ is large, then the distance between |ψ(t)⟩ and the ground state of Ĥ(t) will be small for
all t ≤ τ . One caveat is that the gap between the two lowest energy levels of the Hamiltonian Ĥ(t)
must be greater than 0 for all 0 ≤ t ≤ τ .

Initial Hamiltonian matrix

Ĥ(0) =

n∑
i=1

Ji

Here Ji is given below, where the i th 2x2 matrix in the Kronecker product equation is J = 1
2 (I−σX)

Ji = I ⊗ ...⊗ I ⊗ J ⊗ I ⊗ ...⊗ I

Ĥ(0) has a ground state |ψg⟩ = H⊗n |0n⟩ = 1√
2n

∑
y∈{0,1}n |y⟩ that is nondegenerate (unique).

Proof:

This means the eigenvector corresponding to the smallest eigenvalue of Ĥ(0) is the uniform superpo-
sition |ψg⟩ = 1√

2n

∑
y∈{0,1}n |y⟩ and the multiplicity of this eigenvalue is 0.

First, I will prove that Ĥ(0) has real and non-negative eigenvalues, and real eigenvectors. Since J is
symmetric, J must have real eigenvectors. Let x ∈ R2
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xTJx = xT

[
1
2 − 1

2
− 1

2
1
2

]
x =

1

2
(x21 − 2x1x2 + x22) =

1

2
(x1 − x2)

2 ≥ 0

xT Ix = xTx = ||x||2 ≥ 0

Therefore J, I are positive semidefinite. Since the Kronecker product preserves positive semi-
definiteness,

Ji = I ⊗ ...⊗ I ⊗ J ⊗ I ⊗ ...⊗ I is also positive semidefinite.

Since the sum of positive semidefinite matrices is also positive semidefinite, Ĥ(0) =
∑n

i=1 Ji is
positive semidefinite. Since Ĥ(0) is a positive semidefinite matrice, it must have real eigenvectors
and both non-negative and real eigenvalues.

Since JH |0⟩ = 1
2

[
1√
2
− 1√

2

− 1√
2
+ 1√

2

]
= 0, then JiH⊗n |0⟩ = ...⊗ 0⊗ ... = 0

Therefore Ĥ0 |ψg⟩ =
∑n

i=1 Ji |ψg⟩ = 0, so |ψg⟩ is an eigenvector of Ĥ with eigenvalue 0. Since
Ĥ(0) has non-negative real eigenvalues, then |ψg⟩, with eigenvalue 0 is the smallest eigenvalue.

Finally, I will show that |ψg⟩ is non-degenerate: Let us assume there is a real |y⟩ ∈ R2n where
Ĥ(0) |y⟩ = 0 and therefore ⟨y| Ĥ(0) |y⟩ = 0

⟨y| Ĥ(0) |y⟩ = ⟨y| J1 |y⟩+ ...+ ⟨y| Jn |y⟩ and ⟨y| Ji |y⟩ ≥ 0

Therefore Ĥ(0) |y⟩ = 0 =⇒ ∀i, ⟨y| Ji |y⟩ = 0

If |x⟩ ∈ R2, then J |x⟩ = 0 =⇒ |x⟩ = ±

[
1√
2
1√
2

]
= ± |+⟩.

If |y⟩ ∈ R2n , then Ji |y⟩ = 0 =⇒ |y⟩ = ...⊗± |+⟩ ⊗ ...; the ith qubit is unentangled and is ± |+⟩
Since the above is true for all i, therefore |y⟩ = ± |+⟩ ⊗ ... ⊗ ± |+⟩ = ± 1√

2n

∑
y∈{0,1}n |y⟩.

Therefore |ψg⟩ is a non-degenerate ground state. This is good news since |ψg⟩ can be prepared as
the initial configuration simply by applying a layer of all Hadamard gates.

Defining the Hamiltonian Hf

Ideally, we would want low energy eigenstates in the Hamiltonian Hf to translate to a self-avoiding
walk with many hydrophobic interactions. We will use soft constraints to make sure a low-energy
eigenstate satisfies:

1. The output state should translate to a valid walk (each AA position should have an L1 distance of 1
from the next AA in the sequence). We will define this soft constraint with the term Hw.

2. The translated walk should be self-avoiding (for all AAs the positions should be different). We
will define this soft constraint with the term Hs.

3. We want to reward walks with more hydrophobic interactions (dashed lines in Fig. 2C) with an
additional score of -1 for each interaction. This reward will be defined using the term Hr.

Our final Hamiltonian will be Hf , with each eigenstate’s energy given by the sum Hw +Hs +Hr.

Defining Hs

Our goal is to penalize states that encode two AAs in the same position.

Using our encoding above, let ind(i, k, r) represent the index corresponding to the rth bit of the ith
AA in the kth dimension. Where 1 ≤ r ≤ ⌈log2(N)⌉, 1 ≤ i ≤ N , 1 ≤ k ≤ D. Let q be the binary
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representation of our state such that qind(i,k,r) represents the rth bit of the kth dimension of the ith
AA.

Let us define a function h which takes in two AA indices 1 ≤ i, j ≤ N and outputs a positive number
when the ith and jth AA are in the same position in the output and 0 otherwise. We essentially want
to perform an XNOR operation from each bit of i to the corresponding bit of j.

h(i, j) =

D∏
k=1

log2(N)∏
r=1

(1− qind(i,k,r) − qind(j,k,r) + 2qind(i,k,r)qj,k,r)

The innermost expression of the product maps 00 → 1, 11 → 1, 01 → 0, and 10 → 0. This,
therefore, matches the XNOR gate.

Now, we can search each pair of AAs and penalize with coefficient (N+1). This N+1 term will be
clarified in the Hw section.

Hs = (N + 1)

N−1∑
1

N∑
j=i+1

h(i, j)

Defining Hw

We can define the squared L2 distance function between amino acids 1 ≤ i, j ≤ N using our binary
encoding:

d2i,j =

D∑
k=1

(

log2(N)∑
r=1

2r−1(qind(i,k,r) − qind(i,k,r)))
2

Since we have integer grid points, d2(i, j) is only 1 when the L1 distance function is 1. Therefore,
we can define Hw as:

Hw = N(1−N +

N−1∑
i=1

d2(i, i+ 1))

You may have noticed Hw gives a negative penalty (reward) to AAs with d2(i, j) = 0 by 1. This is
fixed by also considering Hs, which penalizes AAs in the same position by N + 1 each pair. If any
two AAs occupy the same position Hs +Hw ≥ N

If no two AAs occupy the same position, but the L1 distance is greater than 1 for some neighboring
AA pair, Hw ≥ N,Hs = 0

If a configuration is valid, then Hw = Hs = 0.

Theorem: The max number of interactions for a length N sequence of all hydrophobic AAs is less
than N in a valid self-avoiding walk.

Therefore −N < Hr ≤ 0. So, the total energy is Hs +Hw +Hr > 0 for any invalid output (not a
self-avoiding walk). For any valid self-avoiding walk, the total energy is Hs +Hw +Hr ≤ 0.

Defining Hr

Hr = −
N∑
i=1

N∑
j=i+1

Gi,jMi,j

Gi,j = PiPj if |i− j| = 1

Gi,j = 0 otherwise
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Here, Gi,j = 1 only when the ith and jth AA are neighboring and both are hydrophobic. Gi,j only
needs to be computed once as it only depends on P .

Mi,j = 1 when the ith and jth AA are neighboring in the encoded walk, and 0 otherwise. Perdomo
et al. defined Mi,j using half and full adder circuits to compute L1 distance along each of the 6-axis
directions. To keep this survey brief, I will avoid writing its explicit form.

Converting Hf to a 2-Local Hamiltonian Currently, this formulation of Hf requires 6log2N
locality. This is because the number of variables needed in each independent operation is the number
of bits (3log2N each) for two amino acids.

To reduce the locality of Hf and make the algorithm more experimentally viable, Perdomo et al.
use Boolean reduction methods. By creating a larger set of binary variables, the ancilla bits can be
substituted into the original equation. A penalty term in the Hamiltonian is then used to create a soft
constraint that the ancilla bits take the value of an intermediate computation. The one downside to
this approach is that the decrease in locality comes at the cost of a much higher resource requirement
from the ancilla qubits. After reducing Hf to a 2-local Hamiltonian, the number of qubits needed for
the Hamiltonian computation is (N − 2)(ND − 1). (The N-2 term is from a slightly different output
encoding strategy to reduce redundant self-avoiding walks).

Discussion

Protein folding simulation remains an important and biologically relevant problem. As shown by
Pierce et al., the task of identifying the optimal protein structure is NP-hard [5]. The current state-
of-the-art classical methods, AlphaFold and Phyre2, require massive labeled datasets of protein
structures and protein sequences [6, 7].

Quantum annealing and Quantum Approximate Optimization Algorithm (QAOA) approaches enable
biologically accurate structural predictions without needing to undertake massive experimental data
collection [4, 8]. Additionally, quantum algorithms for protein folding go a step further, offering
insight into how multiple proteins could interact and bind together. This could pave the way for
new kinds of bioinformatic analysis of disease and validation for experimental drug testing through
simulation.

5



References
[1] Enrique Reynaud. Protein misfolding and degenerative diseases | learn science at scitable. Cg_cat:

Protein Misfolding and Degenerative Diseases Cg_level: MED Cg_topic: Protein Misfolding
and Degenerative Diseases.

[2] Alejandro Perdomo, Colin Truncik, Ivan Tubert-Brohman, Geordie Rose, and Alán Aspuru-Guzik.
Construction of model hamiltonians for adiabatic quantum computation and its application to
finding low-energy conformations of lattice protein models. 78(1):012320. Publisher: American
Physical Society.

[3] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum computation by
adiabatic evolution.

[4] Anton Robert, Panagiotis Kl Barkoutsos, Stefan Woerner, and Ivano Tavernelli. Resource-
efficient quantum algorithm for protein folding. 7(1):1–5. Publisher: Nature Publishing Group.

[5] Niles A. Pierce and Erik Winfree. Protein design is NP-hard. 15(10):779–782.

[6] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland,
Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,
Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with AlphaFold.
596(7873):583–589. Publisher: Nature Publishing Group.

[7] Lawrence A. Kelley, Stefans Mezulis, Christopher M. Yates, Mark N. Wass, and Michael J. E.
Sternberg. The phyre2 web portal for protein modeling, prediction and analysis. 10(6):845–858.
Publisher: Nature Publishing Group.

[8] Mark Fingerhuth, Tomáš Babej, and Christopher Ing. A quantum alternating operator ansatz
with hard and soft constraints for lattice protein folding.

6


